»-Haskell

named after Haskell Brooks Curry (1900-1982)
(an American Logician)

Brief History m

Non-strict Polymorphic Fun

(FPCA'87) in Portland, Oregon, there was a strong consensus that a committee
be formed to define an open standard for lazy functional languages. The
committee's purpose was to consolidate existing functional languages into a
common one to serve as a basis for future research in functional-language design.

L anquage Designers

Lennart Augustsson, Dave Barton, Brian Boutel, Warren Burton, Joseph Fasel,
Kevin Hammond, Ralf Hinze, Paul Hudak, John Hughes, Thomas Johnsson, Mark
Jones, Simon Peyton Jones, John Launchbury, Erik Meijer, John Peterson,
Alastair Reid, Colin Runciman, Philip Wadler

Haskell (The Programming Language)

e General Purpose, Statically Typed, Purely Functional

e The GHC (Glasgow Haskell Compiler) provides both native compilation and
an interactive environment GHCi (GHC interactive), which functions as an
REPL (Read-Eval-Print-Loop)

e features Type Inference and Lazy Evaluation

L azy Evaluation

delays the evaluation of an expression until its value is needed

The 3 Main Categories of Types for Haskell

e Primitive Types
e (Composite Types
e Algebraic Data Types (ADTs)

(1/3) Primitive Types

Built-in value types that represent singular pieces of data

e Int : Fixed-size whole numbers (e.g. 64-bit)
e Integer : Arbitrary-precision whole numbers

e Float : Single-precision floating-point numbers
e Double : Double-precision floating-point numbers
e Bool : Boolean values (e.g. True, False)

e Char : A single Unicode character

(2/3) Composite Types

Structures that build new types out of existing ones.

e Lists [] : Homogeneous e.g. [Int], [Double], [Char]
e Tuples () : Heterogeneous e.g. (Integer, Int, String)

Note: String is just a type synonym to [Char]
e Functions -> : Arrow is type constructor for function

Note: All functions are curried by default

E.g. Int -> Int -> Bool

(3/3) Algebraic Data Types (ADTs)

A combination of two basic mathematical concepts.
e Product Type : a value has all of these fields
E.g. data Point = Point Double Double

e Sum Type . a value is one of these fields

E.g. data Direction = North | South | East | West

Defining and Applying Functions

-- takes Int, then another Int, and returns Int
add :: Int -> Int -> Int

add X y = x +vy

-- called using spaces, not parentheses.
add 1 2 -- evaluates to 3

add 1 (2+3) -- evaluates to 6

" (Backticks) treats a function as an infix operator

add :: Int -> Int -> Int

add X y = X + vy

-- prefix (the standard way)
add 1 2
-- infix (using backticks)

1 "add’ 2

Pattern Matching

-- definitions checked sequentially from top to bottom
factorial :: Int -> Int
factorial 0 = 1 -- Base Case

factorial n = n * factorial (n - 1) -- Recursive Case

10

Significant Whitespace

-- where introduces local bindings (local variables)
calculatePrice :: Double -> Double
calculatePrice x = itemPrice + tax

where

X * 0.8 -- 20% Discount

itemPrice

tax = itemPrice * 0.07 -- 7% VAT

11

$ (Application) and . (Composition)

-- § feeds right side as the argument to the left side
putStrLn S show (1 + 1) -- feeds show (1+1) to putStrLn

putStrLn (show (1 + 1)) -- same as above

-- . chains functions together (no application yet)
f .g.h$S 10 -- feeds 10 into chained f.g.h
f (g (h 19)) -- same as above

12

Data Structure: Lists and Tuples

-- lists are homogeneous (all must be the same type)
listExample :: [Int]
listExample = [1, 2, 3, 4, 5]

-- tuples are heterogenous (multiple types allowed)
tupleExample :: (Int, Bool, Char, Double)
tupleExample = (1, True, 'a', 5.0)

13

List Comprehension

-- Syntax: [expression | generator, filter(s)]
[x * x | x <- [1..10], x 'mod' 2 == 0]

-- Evaluates to [4, 16, 36, 64, 100]

[x * x | x <- [1..10], x 'mod' 2 /= 0]

-- Evaluates to [1, 9, 25, 49, 81]

14

List Comprehension : Infinite List

-- Syntax: [start,second..end], step is second - start
[2,4..10] -- Evaluates to [2, 4, 6, 8, 10]
[1..] -- Evaluates to [1, 2, 3, 4, 5, 6, 7, 8, 9,

take 10 [x | x <- [1..], x 'mod' 7 == 0]
-- Evaluates to [7, 14, 21, 28, 35, 42, 49, 56, 63 ,70]

]

15

Kostka / Payne / Almén

Tonal Harmony
With an Introduction to Post-Tonal Music

Eighth Edition

This
International
Student Edition
is for use
outside
the U.s.

McGRAW-HILL EDUCATION INTERNATIONAL EDITION

e

16

..

Tonal Music

System where pitches and chords are organized
hierarchically around a central note (the tonic)

17

-—
=

C DE
C DE
ABCDFGABCDFGAB EFGBCDEFGB

ABDEFGABDEFGAB

£om

iﬁ
=

[F]G A B [F]G A B

b 11

ABC@EFGABC@EFGAB EFAB

F[G/A B

=
=

major scale [! ! !

EFGAI[B|CDETF G A[B]

=

=

AB[CIDEFGABCIDEFGAB E[FJGABCDE[FGAB
CDEF[GAB

ABC@EFGABC@EFGAB EFAB

ABCDFGABCDFGAB EFGBCDEFGB

=

major scale [! ! !

EFGAI[B|CDETF G A[B]

=

19

C Major

Whole
Step

C Minor

Whole
Step

Motif

Twinkle Twinkle Little Star

4 ' l
:,‘g‘ e e — p 5 S i
O 4 & D =
Twin-kle, twin-kle, lit - tle star, how I won-der, what you are!

[1l 1) 5) 5) 6) 6) 5) 4) 4) 3! 3! 2) 2) 1]

21

O 00 N O U1 p W N B

FX Pl A p. gl R
Ui D W N RO

module Music where

data Note =C | Cs | D | Ds | E| F| Fs | G | Gs | A | As | B

deriving (Eq, Ord, Enum, Bounded, Show)

data Interval = H | W deriving (Show)

type ScalePattern = [Interval]

majorPattern :: ScalePattern
majorPattern = [W, W, H, W, W, W, H]

minorPattern :: ScalePattern
minorPattern [W, H, W, W, H, W, W]

22

16
5 7
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

intervalTolInt :: Interval -> Int
intervalToInt H = 1
intervalTolInt W = 2

intToNote &: Int —= Note
intToNote n = toEnum (n "mod™ 12)

buildScale :: Note -> ScalePattern -> [Note]
buildScale root pattern =
init $ map intToNote $ scanl (+) (fromEnum root) (map intervalTolInt pattern)

type Motif = [Int]
transposeMotif :: Motif -> [Note] -> [Note]

transposeMotif motif scale =
map (\degree -> scale !! (degree - 1)) motif

23

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

main :: I0 ()
main = do
let twinkleMotif = [1, 1, 5, 5; 6; 6, 5, 4, 4, 3, 3, 2, 2, 1]

let cMajorScale = buildScale C majorPattern

buildScale E majorPattern

let eMajorScale

let aMinorScale buildScale A minorPattern

putStrLn "==> Scales"

putStr "C Major Scale: " >> print cMajorScale
putStr "E Major Scale: " >> print eMajorScale
putStr "A Natural Minor: " >> print aMinorScale
putStrln "

putStrLn "==> Transposed Motif"

putStr "Twinkle in C Major: " >> print (transposeMotif twinkleMotif cMajorScale)
putStr "Twinkle in E Major: " >> print (transposeMotif twinkleMotif eMajorScale)
putStr "Twinkle in A Minor: " >> print (transposeMotif twinkleMotif aMinorScale)

24

~/HaskellMusic> runghc Music.hs

==> Scales

C Major Scale: [C,D,E;F;6,4A,B]

E Major Scale: [E,;Fs8,G8,A,B,Cs,Ds
A Natural Minor: [A,B,C,D,E,F,G]

==> Transposed Motif

Twinkle in C Major: [€,C,6,G;A,A;6,F;F,E,E;D;D,C]
Twinkle in E Major: [E,E,B,;B;Cs,Cs,B,;A,A,68,68,Fs;Fs;E]
Twinkle i1n A Minor: [A,A,E,;E;F,F,E;D;D,C,C,B;B,A]l
~/HaskellMusic> I

25

Euterpea

Paul Hudak (1952-2015) in 2013

26

)
NAPE)

Euterpea

THE HASKELL
SCHOOL OF
S MUSIC

Paul Hudak (1952-2015) in 2013

27

Brief History m

Non-strict Polymorphic Fun

(FPCA'87) in Portland, Oregon, there was a strong consensus that a committee
be formed to define an open standard for lazy functional languages. The
committee's purpose was to consolidate existing functional languages into a
common one to serve as a basis for future research in functional-language design.

L anquage Designers

Lennart Augustsson, Dave Barton, Brian Boutel, Warren Burton, Joseph Fasel,
Kevin Hammond, Ralf Hinze, Paul Hudak, John Hughes, Thomas Johnsson, Mark
Jones, Simon Peyton Jones, John Launchbury, Erik Meijer, John Peterson,
Alastair Reid, Colin Runciman, Philip Wadler

28

Please

PandocgC a universal document converter

About Installing Demos ¥ Documentation Help Extras Releases

Languages

Haskell ® Roff

Rich Text Format Lua
HTML 1.1° Jupyter Notebook
Other 1.4%

If you need to convert files from one markup format into another, pandoc is your swiss-army knife. Pandoc
can convert between the following formats:

(« = conversion from; — = conversion to; < = conversion from and to)

29

Haskell in Industry

Many companies have used Haskell for a range of projects, including:

o ABN AMRO =~ Amsterdam, The Netherlands

ABN AMRO is an international bank headquartered in Amsterdam. For its investment banking activities it
needs to measure the counterparty risk

on portfolios of financial derivatives.

ABN AMRO's CUFP talk 2.

o AT&T

Haskell is being used in the Network Security division to automate processing of internet abuse
complaints. Haskell has allowed us to easily meet very tight deadlines with reliable results.

30

e Aetion Technologies LLC, Columbus, Ohio

Aetion was a defense contractor in operation from 1999 to 2011, whose applications use artificial
intelligence. Rapidly changing priorities make it important to minimize the code impact of changes, which
suits Haskell well. Aetion developed three main projects in Haskell, all successful. Haskell's concise code
was perhaps most important for rewriting: it made it practicable to throw away old code occasionally.
DSELs allowed the Al to be specified very declaratively.

Aetion's CUFP talk 2.

“Haskell's concise code was perhaps most important for rewriting”

31

»-Haskell

IS now my Favorite Language
(I'm not good at it, but | still like it.)

32

