

named after Haskell Brooks Curry (1900-1982)

(an American Logician)

1

Brief History

(FPCA '87) in Portland, Oregon, there was a strong consensus that a committee
be formed to define an open standard for lazy functional languages. The
committee's purpose was to consolidate existing functional languages into a
common one to serve as a basis for future research in functional-language design.

Language Designers

Lennart Augustsson, Dave Barton, Brian Boutel, Warren Burton, Joseph Fasel,
Kevin Hammond, Ralf Hinze, Paul Hudak, John Hughes, Thomas Johnsson, Mark
Jones, Simon Peyton Jones, John Launchbury, Erik Meijer, John Peterson,
Alastair Reid, Colin Runciman, Philip Wadler

2

Haskell (The Programming Language)

● General Purpose, Statically Typed, Purely Functional
● The GHC (Glasgow Haskell Compiler) provides both native compilation and

an interactive environment GHCi (GHC interactive), which functions as an
REPL (Read-Eval-Print-Loop)

● features Type Inference and Lazy Evaluation

Lazy Evaluation

delays the evaluation of an expression until its value is needed

3

The 3 Main Categories of Types for Haskell

● Primitive Types
● Composite Types
● Algebraic Data Types (ADTs)

4

(1/3) Primitive Types

Built-in value types that represent singular pieces of data

● Int : Fixed-size whole numbers (e.g. 64-bit)
● Integer : Arbitrary-precision whole numbers
● Float : Single-precision floating-point numbers
● Double : Double-precision floating-point numbers
● Bool : Boolean values (e.g. True, False)
● Char : A single Unicode character

5

(2/3) Composite Types

Structures that build new types out of existing ones.

● Lists [] : Homogeneous e.g. [Int], [Double], [Char]
● Tuples () : Heterogeneous e.g. (Integer, Int, String)

Note: String is just a type synonym to [Char]

● Functions -> : Arrow is type constructor for function

Note: All functions are curried by default

E.g. Int -> Int -> Bool

6

(3/3) Algebraic Data Types (ADTs)

A combination of two basic mathematical concepts.

● Product Type : a value has all of these fields

E.g. data Point = Point Double Double

● Sum Type : a value is one of these fields

E.g. data Direction = North | South | East | West

7

Defining and Applying Functions

-- takes Int, then another Int, and returns Int

add :: Int -> Int -> Int

add x y = x + y

-- called using spaces, not parentheses.

add 1 2 -- evaluates to 3

add 1 (2+3) -- evaluates to 6

8

` (Backticks) treats a function as an infix operator

add :: Int -> Int -> Int

add x y = x + y

-- prefix (the standard way)

add 1 2

-- infix (using backticks)

1 `add` 2

9

Pattern Matching

-- definitions checked sequentially from top to bottom

factorial :: Int -> Int

factorial 0 = 1 -- Base Case

factorial n = n * factorial (n - 1) -- Recursive Case

10

Significant Whitespace

-- where introduces local bindings (local variables)

calculatePrice :: Double -> Double

calculatePrice x = itemPrice + tax

 where

 itemPrice = x * 0.8 -- 20% Discount

 tax = itemPrice * 0.07 -- 7% VAT

11

$ (Application) and . (Composition)

-- $ feeds right side as the argument to the left side

putStrLn $ show (1 + 1) -- feeds show (1+1) to putStrLn

putStrLn (show (1 + 1)) -- same as above

-- . chains functions together (no application yet)

f . g . h $ 10 -- feeds 10 into chained f.g.h

f (g (h 10)) -- same as above

12

Data Structure: Lists and Tuples

-- lists are homogeneous (all must be the same type)

listExample :: [Int]

listExample = [1, 2, 3, 4, 5]

-- tuples are heterogenous (multiple types allowed)

tupleExample :: (Int, Bool, Char, Double)

tupleExample = (1, True, 'a', 5.0)

13

List Comprehension

-- Syntax: [expression | generator, filter(s)]

[x * x ∣ x <- [1..10], x 'mod' 2 == 0]

-- Evaluates to [4, 16, 36, 64, 100]

[x * x ∣ x <- [1..10], x 'mod' 2 /= 0]

-- Evaluates to [1, 9, 25, 49, 81]

14

List Comprehension : Infinite List

-- Syntax: [start,second..end], step is second - start

[2,4..10] -- Evaluates to [2, 4, 6, 8, 10]

[1..] -- Evaluates to [1, 2, 3, 4, 5, 6, 7, 8, 9, ..]

take 10 [x | x <- [1..], x 'mod' 7 == 0]

-- Evaluates to [7, 14, 21, 28, 35, 42, 49, 56, 63 ,70]

15

16

Tonal Music
System where pitches and chords are organized

hierarchically around a central note (the tonic)

17

18

19

20

[1, 1, 5, 5, 6, 6, 5, 4, 4, 3, 3, 2, 2, 1]

Twinkle Twinkle Little Star

Motif

21

22

23

24

25

Euterpea

Paul Hudak (1952-2015) in 2013

26

Euterpea

Paul Hudak (1952-2015) in 2013

27

Brief History

(FPCA '87) in Portland, Oregon, there was a strong consensus that a committee
be formed to define an open standard for lazy functional languages. The
committee's purpose was to consolidate existing functional languages into a
common one to serve as a basis for future research in functional-language design.

Language Designers

Lennart Augustsson, Dave Barton, Brian Boutel, Warren Burton, Joseph Fasel,
Kevin Hammond, Ralf Hinze, Paul Hudak, John Hughes, Thomas Johnsson, Mark
Jones, Simon Peyton Jones, John Launchbury, Erik Meijer, John Peterson,
Alastair Reid, Colin Runciman, Philip Wadler

28

29

30

“Haskell’s concise code was perhaps most important for rewriting”

31

is now my Favorite Language

(I’m not good at it, but I still like it.)

32

